
Symmetry breaking in an anisotropic space time

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 157

(http://iopscience.iop.org/0305-4470/15/1/024)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 157-161. Printed in Great Britain 

Symmetry breaking in an anisotropic space-time 
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f Department of Theoretical Physics, The University, Manchester, M13 9PL, England 
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Abstract. We calculate ?he one-loop effective Lagrangian for a self-interacting A44 scalar 
field in a static Mixmaster universe. We analyse the effect of anisotropy on the process of 
symmetry restoration. 

1. Introduction 

One of the more popular areas of research in the last year or so has been in identifying 
how space-time curvature or topology can affect symmetry restoration or topological 
mass generation (Gibbons 1978, Shore 1979, Toms 1980, Kennedy 1981, Denardo and 
Spallucci 1981, Critchley et a1 1981). So far all results have either been for flat space 
with non-trivial topology or for isotropic space-times with constant curvature (de Sitter 
or Einstein). It is the purpose of this paper to show how one can obtain useful results for 
the special case of an Einstein universe with a ‘squashed’ spatial section. This universe 
is interesting partly because of the anisotropy but also because it is not conformally flat. 

2. Calculation 

In a previous paper (Critchley and Dowker 1981) we considered free scalar fields 
(massive and massless) in the static Mixmaster universe in some detail and we shall 
therefore be somewhat brief here. The main point we shall make is that if we start from 
the Lagrangian 

z= -gI$(X)(nf&R +mi)I$--7fTiAgqS4 (1) 
and write I$ = 6 + # where # is a small quantum perturbation about the classical 
condensate 6, then the propagator for 4, G(x, x ’ )  satisfies 

(U+ mk +&R +$ABG2)G(x, x’) = S ( x ,  x ’ )  (2) 
since C$ is a constant for static spatially homogeneous space-times. This is merely the 
Klein-Gordon equation for a scalar field of mass p i  = mk + $ A B J 2  and we can use all 
our free-field results. 

For simplicity we shall assume mi, (tB-b) and A B  are small, and therefore that we 
can expand the effective Lagrangian in a Taylor series about small gi + (tB -$R. Our 
version of the zeta function regularisation scheme involves finding the solution to 

(m+pk  +tBR)l4(V)=l-$(V-1)- (3) 
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Here 54(v) is related to the zeta function on the spatial section by (Dowker and Kennedy 
1978) 

54(v) can easily be related to the Green function G(x, x’) (equation (2)) if we note that 
(3) has the solution 

where (x’(s)lx’’(O)) is independent of v. Clearly from ( 5 )  we can write 

The metric for the static Mixmaster universe is given by (Hu 1973) 

(ds)2=(dt)2-lf(dt9)2-li(dt,b)2-21~cos 6 d(6 d$---(sin* 61:+ 1:cos26,)(d~)’.  (71 

Note that we have retained a certain amount of symmetry. Equation (2) has the 
solution 

x exp[im(t,b - $91 exp[in (4 - (6’11 181 

with 

V = 167r21:13 =2x’a3(l  -$a +$cr^ i  

and 
1+a=1;/1;. 

The sum over J covers half-integral and integral values which correspond to a sum over 
1 (= 2J + 1) in equation (8). The derivation of mode functions, energies and further 
details about the space-time can be found in Hu (1973). 

The zeta function equation (6) reduces to 

( t  - t‘)“ 5(; 

x C (-i)”- E y , ~ ( n  - l ) ( n  - 3 ) .  . . ( n  + 3 - 2 ~ ) .  
n - 0  n !  (10) 

The properties of the rotation matrices Dk,(t9) can be found in Vilenkin (1968). 
Although (10) has been derived for integral v we can easily rewrite it in terms of gamma 
functions and thereby allow the Y to become arbitrary. From (5) we can derive the 
relation 
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which is exceedingly useful in deriving our Taylor series. Accordingly, we only need to 
know the massless value of 14(v) or alternatively [3(v).  From Critchley and Dowker 
(1981), or of course via equations (4) and (lo), we find 

53(Y) = a2”{5R(2v -2)-$avlR(2v -2 )  +4a2[&vlR(2v)] 

+ 2 v (v f 1)[&R(2 v - 2) -&lR(2  v )  + & l R ( 2  &’ + 2)]} + o(a ’)* (12) 

CR(v) is the usual Riemann zeta function. In principle there is nothing to stop us going 
to arbitrary order in the distortion parameter cy, but we shall stop at quadratic order. 

The effective Lagrangian is given by 

and can be expanded in a Taylor series to give (using equations (10)-(13)) 

Since this is ostensibly a massive theory we are permitted to absorb In lm2L21 terms into 
a renormalisation of the coupling constants, e.g. Bunch and Davies (1978). 

So if we define 0 = l /(s  - 1) + 2 - 2 In 2 +2-y -In [m2L21 then the 0 terms can be 
interpreted as a renormalisation of the classical Lagrangian which is given by 

In the usual way we find 
4 

A , = A + ~  rl 
3 2 ~ ~ 2  

1 2  
cy 2a d ( R 2 - 3 R , , R , ” ) = ~ - , ( R 2 - 3 R , ~ ’ ” ” ) +  , + ( 5 B 3 6 ( 1 + & ~  -&’)a (16) 

1 8 0 ~  a 6 4 ~  a 

and 

2 m A -  3A2 A 2 

m g = m  +---a A ~ = A + - ~  5B = 6+= ( 6 - m  32r2 32m2 
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which leaves 

x[lnln2m2/ t(-b +~~cy')+fa '(-5R(3)+2iR(5))] .  1181 

Defining Ztot = 5% -+Zen where% is given by ( lS) ,  but with the subscript B dropped, 
we now look for a solution to the equation 

19i 

for some (real) value of 6. 
It is easy to show that a solution is possible provided 

x [lnjm2a21 -icy +&cy' +icy2(iR(31 +2iR\5))]+ ~ ( h ' r  (201 

where terms of order [m'+(& -%)R]' have been dropped. 
In order to determine the critical value of m2. denoted by m t ,  for which the 

inequality holds, we approximate the vaiue of mc on the right-hand side of equation 
(20) by its classical value m t  = -(R. This involves no loss of generality since all we are 
doing is throwing away terms of order (h21. The resultant IncR term can then be 
expanded in terms of 6 - k  and the cy up to the required order. Our final result is 

mc+cR = y [ l  +in + & ~ ~ ( S i - 2 [ ~ ( 3 ) -  20;,(5))] 
2 Ah 

96ir ci 

Ah 
3 2 7  

121 b 

It is of no little interest to note that equations (18) and (20) are real even when /k <: 0 
and = 0. This is not the case for an analogous situation (flat space, finite temperature) 
discussed by Dolan and Jackiw (1974). These authors computed the critical tempera- 
ture at which the symmetry is spontaneously broken and found contributions which 
were imaginary and could not be included in the calculation of the critical temperature. 
For comparison, we quote their result for their effective potential which is the negative 
of the effective Lagrangian. They find. 

_- ( 6 - i ) ~  + 0 ( h ~ ) + 0 ( ~ ~ ) + 0 ~ ( ~ - - f t ) : i ,  

1 M 3  1 
1277 p 64ir 

+ 7 ($1- 2 In 47r - 2y)M4 -I- O(mhp2i 122) 

where M 2  = (m2+$Ad2), p =(temperature) '. 
Equation (22) is a high-temperature expansion. Note the error in their equation 

(3.15): In M 2 j m 2  should be In M2/lm21, the \m21 coming from a (real? renormalisation 
of the cosmological constant. 
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3. Comments 

If grand unified theories have a role to play in the early history of the universe, then it 
will be necessary to give a systematic treatment of symmetry breaking/restoration in 
curved spaces (and at finite temperatures). The present calculation, although somewhat 
trivial, gives an indication of a trend that can be expected from a spatial anisotropy. It 
should be possible to allow for this, at least in those scenarios that have an Einstein 
phase. 

In particular, we observe from (21) that the classical and quantum corrections are in 
competition. For the prolate situation cy > 0, the effect of the classical 5R term is to 
enhance symmetry restoration, whereas the quantum corrections will try to suppress 
restoration-at least to first order in a and with conformal coupling. 
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